If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+10x=0
a = 4; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·4·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*4}=\frac{-20}{8} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*4}=\frac{0}{8} =0 $
| 7+5x=75x | | 8(7-x)=70 | | 1/5h+4=3/5h+8 | | 6x2+x-22=0 | | 46x+90=34x-6 | | 8x-3x=2x-19 | | 5=x/3=-5 | | x/190=4/130 | | 28x-12+36=-22x-12-10x | | y-17y+90y-144=0 | | (x^2+4x)/5=0 | | 1/b^2-7b+10+1/b-2=2/b^2-7b+10 | | y=8.50+30 | | b/4+7/4=9 | | 0.5(11x-60)-2x=2 | | 2y+6=5y/2 | | -3v^2=6v | | 10x+109=7x-21 | | -x-1=6 | | -59x-30=-25 | | -.4n+.305=2.25 | | m(m-1)-3(1-m)=0 | | 5-1a=4-a | | 3x+21=9x+37 | | z3=216 | | x^+2x=15 | | -2x-15=-1 | | 42x+1=128 | | 2(5-2x-5x)=19-5(2x+5) | | 4f-3f=-32 | | -4x+29=9 | | 24x2-26x-5=0 |